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Diacylglycerol (DAG) is a key lipid second messenger down-
stream of cellular receptors that binds to the C1 domain in many
regulatory proteins. Protein kinase C (PKC) isoforms constitute
the most prominent family of signaling proteins with DAG-re-
sponsive C1 domains, but six other families of proteins, includ-
ing the chimaerins, Ras-guanyl nucleotide–releasing proteins
(RasGRPs), and Munc13 isoforms, also play important roles.
Their significant involvement in cancer, immunology, and neu-
robiology has driven intense interest in the C1 domain as a ther-
apeutic target. As with other classes of targets, however, a key
issue is the establishment of selectivity. Here, using [3H]phorbol
12,13-dibutyrate ([3H]PDBu) competition binding assays, we
found that a synthetic DAG-lactone, AJH-836, preferentially
binds to the novel PKC isoforms PKC� and PKC� relative to
classical PKC� and PKC�II. Assessment of intracellular trans-
location, a hallmark for PKC activation, revealed that AJH-836
treatment stimulated a striking preferential redistribution of
PKC� to the plasma membrane relative to PKC�. Moreover,
unlike with the prototypical phorbol ester phorbol 12-myristate
13-acetate (PMA), prolonged exposure of cells to AJH-836
selectively down-regulated PKC� and PKC� without affecting
PKC� expression levels. Biologically, AJH-836 induced major
changes in cytoskeletal reorganization in lung cancer cells, as
determined by the formation of membrane ruffles, via activation
of novel PKCs. We conclude that AJH-836 represents a C1
domain ligand with PKC-activating properties distinct from
those of natural DAGs and phorbol esters. Our study supports
the feasibility of generating selective C1 domain ligands that
promote novel biological response patterns.

Lipid second messengers, in particular diacylglycerol (DAG)2

and phosphoinositides, have emerged as key signaling mole-
cules downstream of innumerable cellular receptors. Responses
to DAG are mediated by seven families of proteins, protein
kinase C (PKC), chimaerin, RasGRP, protein kinase D, MRCK,
Munc13, and DAG kinase, which combine a DAG recognition
motif, termed a (typical) C1 domain, along with disparate func-
tional domains and other regulatory domains. Among these
families of signaling proteins, the PKC isoforms have been stud-
ied most intensely (1–3).

PKC isozymes are key elements in signaling cascades that
control multiple cellular functions, including proliferation, sur-
vival, motility, and gene expression, and have been widely
implicated in cancer progression and other diseases. Of the
10 human PKC isoforms, both the “classical/conventional”
(cPKCs) (�, �I, �II, and �) and “novel” PKCs (nPKCs) (�, �, �,
and �) contain twin C1 domains that recognize DAG, whereas
only the cPKCs contain a C2 domain that responds to elevated
internal calcium. For both C1 and C2 domains, ligand binding
leads to insertion/bridging of the C1/C2 domains to the mem-
brane with formation of the ternary complex of domain, ligand,
and phospholipid. Typically, there is a requirement for acidic
phospholipids such as phosphatidylserine for this membrane
interaction (3–5).

Phorbol esters have become the most extensively character-
ized nonphysiological natural compounds capable of activating
PKCs. These diterpenes bind with high affinity to the C1
domains located in the N-terminal regulatory domain of cPKCs
and nPKCs, competing with DAG for binding to C1 domains (6,
7). The C1 domains from PKCs and other proteins with phorbol
ester/DAG– binding capabilities possess an overall similar
globular structure, stabilized by twin zinc fingers, with the
phorbol ester/DAG– binding site formed from a hydrophilic
cavity bounded by a hydrophobic rim. Phorbol ester/DAG
binding completes the hydrophobic surface, while the specific
substituents on the phorbol ester/DAG contribute further
hydrophobic character. The increased hydrophobicity drives/
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stabilizes insertion of the C1 domain–ligand complex into the
membrane lipid bilayer. This insertion is further stabilized by
interactions between charged residues on the surface of the
C1 domain with acidic phospholipid headgroups (8, 9). The
redistribution to membranes induced by phorbol esters or
related C1 domain ligands, i.e. the translocation from the
cytosolic compartment to the plasma membrane or internal
membranes, is a hallmark of PKC activation and can be read-
ily visualized in cellular models by using fluorescently tagged
PKCs (10, 11).

As might be anticipated from their central role in cellular
signaling, the signaling network downstream from the PKC iso-
forms and the other families of signaling proteins with typical
C1 domains is extraordinarily complex. Thus, individual PKC
isoforms have been shown to confer distinctive patterns of cel-
lular responses, and the differences between isoforms may be
dramatic. Depending on cellular context, PKC�, PKC�, and
PKC�, the most commonly expressed PKCs, can trigger
mitogenic/tumor-promoting or conversely antimitogenic/
tumor suppressor responses (3, 12, 13). A prediction is that
ligands binding to typical C1 domains with differential selec-
tivity could therefore induce distinct patterns of biological
response.

Although the relevant mechanisms may be uncertain, there
are clear examples of C1 domain–targeted ligands inducing dis-
tinct patterns of response. Whereas phorbol 12-myristate
13-acetate (PMA) is the archetypical mouse skin tumor pro-
moter, prostratin (12-deoxyphorbol 13-acetate) was shown to
be anti-tumor promoting. Bryostatin 1, a DAG-mimetic mac-
rocyclic polyacetate, activates PKCs in vitro but paradoxically
antagonizes many phorbol ester responses. Ingenol 3-angelate
only partially stabilizes PKC–membrane interactions. Such
diversity of response underlies therapeutic potential. Ingenol
3-angelate (under the trade name PicatoTM) has been approved
for treatment of actinic keratosis. Bryostatin 1 has been the
subject on numerous clinical trials for cancer and more recently
for dementia. Prostratin has been proposed as an agent for con-
ferring sensitivity to drug treatment for cells latently bearing
HIV (12, 14 –17).

A daunting challenge in the development of inhibitors for
kinases has proven to be the large size of the kinome and the
high homology in the ATP-binding site in the kinase domain
(12, 18). Although the high structural similarities among the
binding clefts of C1 domains might a priori suggest similar
problems, several factors provide encouragement. Most impor-
tantly, natural products such as prostratin, bryostatin 1, and
ingenol 3-angelate have unambiguously proven that C1-tar-
geted ligands can achieve differential biological outcomes
(12–18). Deeper consideration of the mechanism provides a
rationale. First, the ligand forms a ternary complex of C1
domain–ligand inserted into the lipid bilayer. The interaction
surface of this complex is thus much more extensive than sim-
ply that formed between the ligand and the binding cleft of the
C1 domain, and there are extensive differences in the surfaces
of the typical C1 domains that interact with the lipid head-
groups. Second, it is appreciated that different ligands can cause
different depths of insertion, changing these interactions. Fur-
thermore, there is considerable diversity between cellular

membranes or between microdomains within the membrane,
changing the lipid environment with which the interactions will
take place (5, 12, 19, 20).

A powerful approach for generating structural diversity
among C1 domain–targeted ligands has been through a DAG-
lactone template, affording compounds approaching the phor-
bol esters in potency (19 –23). Cyclization of DAGs to rigid
lactone structures reduces the entropic penalty associated with
the flexibility of the glycerol backbone and provides a scaffold
with rich opportunities for decoration at positions homologous
to the side chains of DAG. The power of this approach has been
shown in the analysis of combinatorial libraries of DAG-lac-
tones where changes in the patterns of acyl and alkyl substitu-
tion yielded marked differences in the patterns of biological
outcome (24). Likewise, targeted synthesis of DAG-lactones,
extending insights from the combinatorial chemistry, have
yielded compounds with marked selectivity for the RasGRP
family of C1 domain– containing signaling proteins relative to
their affinity for PKC (20).

It has been previously reported that natural DAGs bind with
similar affinities to all cPKCs and nPKCs (25). Toward the
objective of generating isozyme-specific PKC ligands, Ann et al.
(26) had described the incorporation of linoleic acid derivatives
as well as saturated and unsaturated alkyl chains into the side
chains of DAG-lactones and characterized these derivatives for
their in vitro binding affinity toward PKC�, an oncogenic mem-
ber of the PKC family, relative to PKC� (27–32). Following up
on this analysis, here we describe that the DAG-lactone AJH-
836 showed marked selectivity for PKC� and PKC� relative to
PKC� in multiple cell types, unlike the typical phorbol ester
PMA, and correspondingly displayed a distinct pattern of bio-
logical activity. The pattern of selectivity among PKC isoforms
of AJH-836 is novel, further emphasizing the rich opportunities
afforded by C1 domain–targeted ligands.

Results

Differential in vitro binding of AJH-836 to PKC isozymes

Extensive synthetic efforts have generated DAG-lactones
substituted with a diversity of saturated and unsaturated alkyl
and aryl chains at the sn-1 and sn-2 positions on the DAG-
lactone (21, 26). In binding studies using a lipid mixture
designed to mimic nuclear membranes (23), the DAG-lactone
(E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-
oxotetrahydrofuran-2-yl)methyl pivalate (referred to here as
AJH-836; Fig. 1A) was found to display some specificity toward
the novel PKC� relative to the classical PKC�, although the
assay conditions were not fully comparable (26). For compari-
son, no specificity was observed under these conditions for the
DAG-lactone (Z)-(2-(hydroxymethyl)-4-(3-methylbutylid-
ene)-5-oxotetrahydrofuran-2-yl)methyl octadeca-9,11-d-
iynoate (referred to here as AJH-1512; Fig. 1A) (26).

Here, our initial objective was to examine the ability of AJH-
836 to bind to recombinant PKC�, PKC�II, PKC�, and PKC�
(four of the main phorbol ester–responsive PKCs expressed in
cancer cells) under parallel conditions using a competition [20-
3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding assay with
phosphatidylserine vesicles as cofactor (5). Under these condi-

PKC isozyme selectivity of a DAG-lactone

J. Biol. Chem. (2018) 293(22) 8330 –8341 8331



tions, AJH-836 preferentially bound the novel PKC isoforms
PKC� and PKC� with �10 –12-fold higher affinity relative to
the classical PKC isoforms PKC� and PKC�II (Fig. 1B and
Tables 1 and 2). In contrast, AJH-1512 (23) showed similar
affinities for all four isoforms (Tables 1 and 2).

Differential translocation of PKC� and PKC� by AJH-836 in
cellular models

In vitro binding assays using reconstituted phospholipid ves-
icles will necessarily fail to capture the full range of differences
in C1 domain ligand recognition occurring in a cellular context.
To tackle this issue, we next examined subcellular translocation
of the individual PKC isoforms expressed in cells as GFP-fused
proteins. We hypothesized that the differential binding proper-
ties observed in vitro for AJH-836 and AJH-1512 could be
reflected in characteristic patterns of PKC isozyme transloca-
tion in cellular models.

Treatment of HeLa cervical adenocarcinoma cells with
AJH-836 fully translocated PKC� to the plasma membrane in
a concentration-dependent manner (Fig. 2A). The EC50 for
this effect was 0.23 	M. Conversely, much higher AJH-836
concentrations were required to induce PKC� plasma mem-
brane translocation (EC50 � 9.8 	M). The ratio EC50 PKC�/
EC50 PKC� of 43 indicates a notable selectivity for activation
of PKC� by AJH-836 in this cellular context. Unlike AJH-836,
AJH-1512 displayed similar potencies for translocation of
these PKCs (EC50 PKC� � 26.1 	M; EC50 PKC� � 17.1 	M;
ratio EC50 PKC�/EC50 PKC� � 1.5) (Fig. 2B), which was

consistent with the lack of selectivity observed in in vitro
binding assays. As a control, PMA, which potently activates
cPKCs and nPKCs, fully translocated both PKC� and PKC�
to the plasma membrane.

Although PKC� is the major classical PKC isoform in HeLa
cervical adenocarcinoma cells, PKC� is the second major, well-
studied novel PKC isoform along with PKC� in these cells (33).
Because our in vitro binding assays revealed similar preferential

Figure 1. In vitro binding of AJH-836 to PKC�, PKC�, and PKC�. A, general structures of DAG-lactones (left) and AJH-836 (right). B, binding was performed by
competition of a fixed concentration of [3H]PDBu (�1.3 nM) in the presence of 100 	g/ml phosphatidylserine, 1 mM EGTA, and increasing concentrations of
nonradioactive AJH-836. The Ki values are presented in Tables 1 and 2. Results are expressed as mean � S.E. (error bars) (n � 3).

Table 1
DAG-lactone binding affinities for PKC�, PKC�II, PKC�, and PKC�
in vitro
Values represent the mean � S.E. of three independent experiments and were
calculated from the ID50 values determined from the competition curves as
described under “Experimental procedures.”

PKC
isoform

Ki

AJH-836 AJH-1512

nM

PKC� 23.6 � 2.0 25.1 � 1.7
PKC��� 19.7 � 0.8 16. 5 � 0.3
PKC� 1.89 � 0.16 8.78 � 0.96
PKC� 1.89 � 0.20 15.7 � 1.1

Table 2
Ki ratios for DAG-lactones AJH-836 and AJH-1512

Com-
pound

Ki ratio
PKC�/nPKC PKC�II/nPKC

AJH-836 PKC�/PKC� � 12.4 PKC�II/PKC� � 10.4
PKC�/PKC� � 12.4 PKC�II/PKC� � 10.4

AJH-1512 PKC�/PKC� � 2.9 PKC�II/PKC� � 1.9
PKC�/PKC� � 1.6 PKC�II/PKC� � 1.1
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affinities for PKC� and PKC� for AJH-836, we wished to
address whether this DAG-lactone displays similar selectivity
for PKC� translocation in the cellular context. A limitation,
however, is the predominant pattern of PKC� translocation to
internal membranes (perinuclear/Golgi region and nuclear

membrane) (11, 22, 34 –36), which makes it less objective to
quantify upon direct visualization. Moreover, prominent peri-
nuclear PKC� localization could be observed under basal con-
ditions in HeLa cells (Fig. S1). As expected, AJH-836 treatment
led to a quite heterogeneous pattern of PKC� translocation with
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cells showing staining in plasma membrane, nuclear mem-
brane, and/or the perinucleus. If only plasma membrane trans-
location were assessed, results revealed a reduced ability of
AJH-836 to redistribute PKC� relative to PKC� (EC50 � 11 	M;
ratio EC50 PKC�/EC50 PKC� � 48) (data not shown).

As the pattern of PKC isozyme translocation may vary
depending on the cellular context, we also evaluated PKC� and
PKC� relocalization by AJH-836 in A549 and H358 non-small-
cell lung cancer (NSCLC) cells. We used a concentration of
AJH-836 of 1 	M, which showed the maximum difference in
translocation between PKC� and PKC� in HeLa cells. As clearly
shown in Fig. 2, C and D, AJH-836 fully translocated PKC� in
both A549 and H358 NSCLC cells, whereas translocation of
PKC� was negligible. As expected, PMA caused full transloca-
tion of both PKC� and PKC� to the plasma membrane in
NSCLC cells.

To further corroborate the differential translocation pat-
tern of PKC isozymes by AJH-836, we carried out a quanti-
tative densitometric analysis of PKC cellular localization
using ImageJ. As shown in Fig. 3, PMA promoted a marked
shift in cytosolic to membrane intensity for both PKC� and
PKC� in HeLa cells with a 4.4- and 4.0-fold increase in the
membrane/cytosolic PKC ratio, respectively. In contrast, the
pattern of redistribution of PKC� and PKC� induced by
AJH-836 was drastically different. Indeed, at 1 	M, AJH-836
treatment caused a 3.5-fold increase in the membrane/cyto-
solic ratio for PKC�, whereas it did not appreciably affect this

ratio for PKC�, thus confirming the selectivity of this DAG-
lactone for PKC�.

Activation of PKC� by AJH-836 in cellular models

To investigate the potential ability of AJH-836 to activate
PKC�, we measured PKC� phosphorylation at Ser299. Phospho-
rylation at this site has been reported to be a marker of catalyt-
ically active enzyme (37, 38). Analysis of Ser299-PKC�phosphor-
ylation by Western blotting using a specific phosphoantibody
revealed concentration-dependent activation by AJH-836 in
HeLa, A549, and H358 cells. Our results revealed maximum
phosphorylation by AJH-836 at 10 	M in all cases. The EC50
values from the phospho-Ser299-PKC� densitometric analysis
were 0.8 (HeLa cells), 1.3 (A549 cells) and 0.9 	M (H358 cells)
(Fig. 4).

Differential down-regulation of PKC isozymes by prolonged
treatment with AJH-836

Prolonged stimulation of cells with phorbol ester analogues
is known to down-regulate the expression of PKCs, a process
that occurs upon sustained association with the plasma mem-
brane and is mediated via protein degradation at intracellular
compartments (39 –41). We compared the ability of AJH-836
to down-regulate the PKC isoforms as a function of time and
concentration using the NSCLC cellular models. Down-regula-
tion of PKC� and PKC� by AJH-836 in the A549 and H358 cells
was negligible after 3 h and began to be detected at 6 h, partic-
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ularly at 1 	M AJH-836. Near complete down-regulation for
both PKC� and PKC� was observed after 16 or 24 h of treatment
with 1 	M AJH-836 for both the A549 and H358 cells. In con-
trast, the pattern of PKC� down-regulation was notably differ-
ent. PKC� levels in the A549 and H358 cells remained essen-
tially unchanged upon treatment with 1 	M AJH-836, even at
the longer time points. Only a partial PKC� down-regulation
could be observed at the highest concentration used in this
analysis (10 	M) (Fig. 5, A and B). The distinctive pattern of PKC
isozyme down-regulation caused by AJH-836 became more evi-
dent when compared with that induced by PMA. PMA down-
regulated all three PKC isoforms in the NSCLC cells with a
slight preference toward PKC�. This differential sensitivity for
PKC isozyme down-regulation between PMA and AJH-836 is
depicted in Fig. 5, C and D.

AJH-836 induces major changes in cytoskeletal morphology

We have previously reported that specific activation of lung
cancer cells with PMA induces the formation of lamellipodia
and membrane ruffles, actin-rich cytoskeletal structures impli-
cated in the reorganization of actin cytoskeleton and cell motil-
ity. This effect is mediated by the activation of the small G-pro-
tein Rac1. PKC� has been shown to be a crucial mediator of
ruffle formation in lung cancer cells (31, 42, 43). To investigate
the functional responses triggered by AJH-836, we examined
morphological changes induced by this agent in A549 cells. Fig.
6A shows that the DAG-lactone induces the formation of ruf-
fles in A549 cells in a concentration-dependent manner. Next,
we examined the effect of PKC inhibitors with distinctive
isozyme selectivity on the ability of AJH-836 to induce ruffles.
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The widely used pan-PKC inhibitors GF109203X and Gö6983,
which inhibit both nPKCs and cPKCs, caused complete inhibi-
tion in ruffle formation induced by AJH-836. In contrast,
Gö6976, which preferentially inhibits cPKCs over nPKCs (44),
only caused a small reduction in ruffle formation (Fig. 6B).

To further assess the involvement of individual PKCs
expressed in A549 cells in AJH-836 –induced ruffle formation,
we used validated RNA interference (RNAi) duplexes to knock
down PKC�, PKC�, or PKC� (Fig. 6C). Consistent with the
involvement of PKC� in cytoskeleton rearrangement (31),
silencing its expression caused a marked reduction in the for-
mation of ruffles induced by the DAG-lactone. Conversely, no
inhibition in AJH-836 –induced ruffle formation could be
observed upon silencing PKC�. PKC� RNAi depletion in A549
cells caused a marginal reduction in ruffle formation by AJH-
836, although not statistically significant (p � 0.06), and did not
have any additive effect when knocked down together with
PKC�.

Lastly, to further confirm the involvement of PKC� as a target
for AJH-836 in A549 cells, we took advantage of �V1-2, a TAT-
fused peptide that selectively inhibits PKC� (18, 30, 31, 45). This
inhibitor caused a significant inhibition in ruffle formation
induced by the DAG-lactone, whereas a TAT control peptide
had no effect (Fig. 6D). Although we did not examine the activ-
ity of AJH-836 on targets other than the PKC isoforms, these
experiments clearly show that the effects of AJH-836 on mor-
phology in the cell systems examined were mediated by the
novel PKCs, in particular PKC�.

Discussion

In the present study, we characterized a DAG analogue, AJH-
836, which has higher affinity in vitro for novel PKC� and PKC�
isozymes relative to PKC�. Consistent with this result, analysis
of intracellular relocalization revealed that AJH-836 has greater
potency for translocation (i.e. activation) of PKC� to the plasma
membrane relative to PKC�. This is quite remarkable because,
as demonstrated in early studies, DAG generated physiologi-
cally upon activation of receptors displays similar in vitro affin-
ities for cPKCs and nPKCs, a pattern also observed for proto-
typical phorbol esters. Unlike AJH-836, other DAG-lactones
have been reported to have similar activities for cPKCs and
nPKCs in vitro and better translocate PKC� to the plasma
membrane (22, 46). Other natural compounds with C1
domain– binding capabilities such as 12-deoxyphorbol esters,
mezerein, and thymeleatoxin have higher affinities for cPKCs
relative to nPKCs (25).

It is well-established that phorbol esters and related ana-
logues, including DAG-lactones, bind specifically to the C1
domains in cPKCs and nPKCs. These domains are duplicated in
tandem (C1a and C1b) in these two PKC subfamilies. Binding
occurs in the groove formed where the two strands of a �-sheet
pull away from each other, and the bound ligand results in a

completed hydrophobic surface on the C1 domains that is ener-
getically favorable to interact with the hydrocarbon core of the
phospholipid bilayer. Basic residues distal to the phorbol ester/
DAG– binding site contribute by interacting with headgroups
from acidic phospholipids (8). In a cellular context, phorbol
ester/DAG binding to the C1 domain triggers the translocation
of the enzyme to membranes. C1 domains also have additional
roles, including binding to autoinhibitory sites, that reflect the
potential differential roles of “exposed” versus “nonexposed” C1
domains (9, 47, 48). The differential binding of AJH-836 to
PKCs may be the consequence of different scenarios, one of the
obvious being the preferential association between the ligand
and nPKC C1 domains dictated by specific residues interacting
with the DAG-lactone backbone and/or alkyl chains in the
appropriate binding modes. It is probable that specific “ternary
complex” interactions that involve membrane phospholipids
may contribute to AJH-836 isozyme specificity as well, a setting
that is consistent with the dependence of its binding affinity on
the membrane composition (26). Although dissecting the indi-
vidual structural features contributing to the pattern of PKC
isoform selectivity will depend on extensive structural analysis,
the current data make unambiguously clear that it is possible to
generate differential PKC isoform selectivity such as described
here along with differential biology.

AJH-836 is structurally simple compared with the highly
complex natural PKC ligands such as the phorbol esters, bryo-
statins, ingenols, and indolactams. It therefore provides a pow-
erful lead compound for probing the features conferring nPKC
selectivity. Structure–activity analysis based on modifications
of DAG-lactones has proven to be a successful approach for the
generation of potent analogues capable of distinguishing
between different proteins with C1 domains (20, 25, 49, 50), and
it therefore represents a promising strategy for achieving PKC
isozyme selectivity. It should be emphasized that absolute
selectivity among the families and family members of the sig-
naling proteins that contain typical C1 domains is not necessary
to generate useful compounds. Rather, as evidenced by natural
products such as bryostatin 1, ingenol 3-angelate, and prostra-
tin, compounds that can generate different patterns from the
rich network of responses downstream of these signaling pro-
teins may have utility.

One attractive scenario where selective agents such as AJH-
836 may have unique effects is in cancer cell models where
individual PKCs seem to exert specific functions. For example,
PKC� is largely overexpressed in epithelial cancer cell lines and
drives migratory and metastatic phenotypes (3, 27, 29 –32). In
this context, we found that AJH-836 promotes the formation of
ruffles, a step that is essential for cancer cell motility. Because
PKC� has tumor-promoting functions and other PKCs, includ-
ing PKC�, have been shown to suppress tumor growth (3, 27),
differential regulation of PKC isoforms such as PKC� and PKC�

Figure 5. Differential down-regulation of PKC isozymes by AJH-836. Cells were serum-starved for 24 h and then treated with different concentrations of
AJH-836 (0.01–10 	M) or PMA (0.1 	M). Cells were lysed at different time points (3, 6, 16, and 24 h), and expression of endogenous PKC isozymes was determined
by Western blotting using antibodies against specific PKC isoforms. A, effect of AJH-836 on the level of expression of PKC isoforms in A549 cells. B, effect of
AJH-836 on the level of expression of PKC isoforms in H358 cells. In A and B, representative experiments (top) and quantification of three independent
experiments (bottom) are shown. C, comparison of 1 	M AJH-836 and 0.1 	M PMA in A549 cells. D, comparison of 1 	M AJH-836 and 0.1 	M PMA in H358 cells.
Results are expressed as mean � S.E. (error bars) of three individual experiments.
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by C1 domain ligands could promote novel, inhibitory effects
on the transformed phenotype. Although we have yet to exam-
ine the binding properties of AJH-836 for PKCs expressed in
specialized cell types, such as PKC� (expressed mainly in T
lymphocytes) and PKC� (expressed primarily in skin), their ho-
mology to PKC� and PKC�, respectively, argues for potential
usefulness of this DAG analogue in specific contexts (51, 52).

In summary, the functional characterization of AJH-836 pro-
vides a glimpse into the opportunities for PKC isozyme selec-
tivity by manipulation of conformationally constrained DAG-
lactones. Given the simplicity and accessibility for chemical
modification, this compound provides a platform for the ratio-
nal design of nPKC-selective agents. Individual members of the
PKC family, including nPKCs, and other phorbol ester receptor
families have been extensively implicated in human disease, not
only cancer but also cardiovascular, neurological, and immuno-
logical disorders. Therefore, compounds capable of distin-
guishing among the different proteins with C1 domains could
be promising leads for therapeutic purposes.

Experimental procedures

Cells and reagents

HeLa, A549, and H358 cells were obtained from the ATCC
and cultured in DMEM (HeLa cells) or RPMI 1640 medium
(A549 and H358 cells) supplemented with 10% FBS, 2 mM glu-
tamine, 100 units/ml penicillin, and 100 	g/ml streptomycin at
37 °C in a humidified 5% CO2 atmosphere. PMA was purchased
from LC Laboratories (Woburn, MA). 4�,6-Diamidino-2-phe-
nylindole (DAPI) was obtained from Roche Diagnostics.

Synthesis of AJH-836 and AJH-1512

The synthesis of AJH-836 and AJH-1512 is reported in detail
elsewhere (23). These agents are described as compounds 104
and 98, respectively, in that study.

In vitro binding assays

PKC�, -�II, -�, and -� were from Life Technologies. Com-
pounds were assayed in vitro by competition for the binding of
[3H]PDBu (13.5 Ci/mmol; prepared as a custom synthesis by
PerkinElmer Life Sciences) in the presence of 100 	g/ml phos-
phatidylserine and 1 mM EGTA as described previously (5).
Incubation was for 5 min at 37 °C. In each competition assay,
seven concentrations of ligand (DAG-lactone) were used with
the increasing concentrations of ligand spaced at half-log inter-
vals. In each experiment, triplicate measurements at each con-
centration of ligand were performed. Ki values were calculated
from ID50 values determined from the competition curves
using GraphPad software built-in analysis tools (GraphPad
Software, Inc., San Diego, CA).

Translocation of GFP-tagged PKC isozymes in cellular models

For localization studies of GFP-fused PKCs, experiments
were carried out essentially as described previously (10). After
transfection of cells (5 � 104) with 1 	g of pEGFP-N1-PKC�,
pEGFP-N1-PKC�, or pEGFP-N1-PKC� using Lipofectamine
3000, the cells were plated on coverslides in 24-well plates.
Twenty-four hours later, cells were serum-starved for 24 h and
then stimulated with PMA, AJH-836, AJH-1512, or vehicle for
30 min. After cells were washed with PBS and fixed with pre-
cooled (	20 °C, 20 min) methanol, samples were stained with
DAPI (1 	g/ml) for 10 min at 4 °C, mounted on a glass slide, and
visualized with a Nikon TE2000-U fluorescence microscope.
For the quantification of translocated cells, 20 –100 cells/plate
were visually assessed in a blinded manner. Translocation was
also quantitated using ImageJ. A line was traced across the cyto-
plasm of individual cells, and the signal intensities and profiles
were obtained using the Plot profile tool of the program.

Western blotting

Cells were harvested in lysis buffer containing 50 mM Tris-
HCl, pH 6.8, 10% glycerol, and 2% �-mercaptoethanol. Cell
lysates were subjected to SDS-PAGE and transferred to polyvi-
nylidene difluoride membranes (Millipore Corp.). After being
blocked for 1 h with 5% milk or 5% BSA in TBS and 0.1% Tween
20, membranes were incubated overnight with the following
primary antibodies: anti-PKC�, anti-PKC�, anti-PKC� (all
from Cell Signaling Technology; 1:1,000 dilution; catalogue
numbers 2056, 2058, and 2083, respectively), anti-phospho-
Ser299-PKC� (Abcam; 1:1,000 dilution; catalogue number
133456), vinculin (Sigma-Aldrich; 1:5,000; catalogue number
V9131), and �-actin (Sigma-Aldrich; 1:50,000 dilution; cata-
logue number A5441). After extensive washing, membranes
were incubated for 1 h with either anti-mouse (1:1,000 dilution)
or anti-rabbit (1:3,000 dilution) secondary antibodies conju-
gated to horseradish peroxidase (Bio-Rad). Bands were visual-
ized and subjected to densitometric analysis using an Odyssey
Fc system (LI-COR Biosciences, Lincoln, NE).

PKC down-regulation assays

For assessment of PKC down-regulation, 1.5 � 105 cells were
serum-starved for 24 h and then treated with different concen-
trations of PKC activators. Cells were lysed at different time
points (3, 6, 16, and 24 h). Expression of endogenous PKC
isozymes was determined by Western blotting.

Cell ruffle formation

Assessment of morphological cytoskeletal changes was done
as described before (31). Briefly, A549 lung cancer cells growing
on glass coverslides at low confluence were serum-starved for

Figure 6. AJH-836 stimulates the formation of ruffles in lung cancer cells. A, A549 cells were serum-starved for 24 h and then stimulated for 30 min with
different concentrations of AJH-836 or 0.1 	M PMA as a control. Cells were fixed and stained with phalloidin-rhodamine. Left, representative micrographs. Right,
quantification of cells bearing ruffles, expressed as mean � S.D. (error bars) of five random fields. Similar results were observed in an additional experiment. B,
effect of different PKC inhibitors (3 	M) on ruffle formation induced by 1 	M AJH-836. Left, representative micrographs. Right, quantification of ruffle area/cell.
C, ruffle formation induced by 1 	M AJH-836 in A549 cells subjected to PKC�, PKC�, and/or PKC� RNAi. NTC, nontarget control RNAi. Upper panel, representative
micrographs. Lower left, quantification of ruffle area/cell. Dotted line, nontarget control RNAi 
 AJH-836. Lower right, representative Western blotting showing
specific depletion of PKCs. D, ruffle formation induced by 1 	M AJH-836 in the presence of the PKC� inhibitor �V1-2 or its control TAT peptide. Left, represen-
tative micrographs. Right, quantification of ruffle area/cell. Dotted line, parental cells 
 AJH-836. B–D, results are expressed as mean � S.E. (error bars) of 3
independent experiments. *, p � 0.01; **, p � 0.001.
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24 h and stimulated with AJH-836 at the concentrations indi-
cated. Following fixation with 4% formaldehyde, F-actin was
stained with phalloidin-rhodamine, and nuclei were counter-
stained with DAPI. Slides were visualized by fluorescence
microscopy, and five random fields were scored for the number
of ruffles. Ruffle area was measured by thresholding for signal
intensity using ImageJ.

RNAi

For silencing PKC isozymes, we used previously validated
ON-TARGETplus RNAi sequences from Dharmacon (Lafay-
ette, CO) as follows: J-003523-17-0002 (PKC�), J-003524-08-
0002 (PKC�), and J-004653-08-0002 (PKC�). As a nontarget
control, we used D-001810-10 ON-TARGETplus nontargeting
siRNA numbers 2 and 5. RNAi duplexes were transfected using
Lipofectamine RNAiMAX (Invitrogen). Experiments were carried
out 48 h after transfection.

Statistical analysis

Analysis of variance was performed using GraphPad Prism
software built-in analysis tools. The confidence interval was set
to 95%. A p value �0.05 was considered statistically significant.
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